三维片上网络(3D NoC)被认为是提高多核处理系统性能的一种方式。对于3D NoC的设计,如何将给定应用特征图(APCG)上的IP核适当地分配到3D NoC架构中是IP核映射的关键问题。一种优秀的映射算法及一次合理的映射可以大幅改善片上网络的通信功耗、发热、延时等指标。大爆炸算法(BB-BC)是一种新型的元启发式群体智能优化算法;混合混沌大爆炸(HCBB-BC)算法是在大爆炸算法基础上进行改进的一种算法,它具有参数简单、收敛速度快等优点。文中提出将混合混沌大爆炸算法用于解决三维片上网络映射问题,这是首次用大爆炸算法的相关算法来解决3D NoC映射问题。仿真实验结果证明,与现有的3D NoC映射算法相比,所提方法可以用更少的迭代次数和时间来找到更好的解决方案,同时有效地降低3D NoC的映射功耗。在经典任务图映射条件下,混合混沌大爆炸算法与遗传算法(GA)相比,收敛速度提高了36.73%,与粒子群算法(PSO)相比,收敛速度提高了22.45%;同时,混合混沌大爆炸算法的平均功耗比遗传算法的平均功耗的最大值低5.75%,并且比粒子群算法的平均功耗的最大值低3.90%。在随机任务图映射条件下,混合混沌大爆炸算法仍然能够保持稳定的功耗优化效率和更快的收敛速度。
[三维片上网络, 映射算法, 低功耗, 大爆炸算法, 混合混沌大爆炸算法]
[范星冉, 宋国治, 李加正]