脉动阵列结构规整、吞吐量大,适合矩阵乘算法,广泛用于设计高性能卷积、矩阵乘加速结构。在深亚微米工艺下,通过增大阵列规模来提升芯片计算性能,会导致频率下降、功耗剧增等问题。因此,结合3D集成电路技术,提出了一种将平面脉动阵列结构映射到3D集成电路上的双精度浮点矩阵乘加速结构3D-MMA。首先,设计了针对该结构的分块映射调度算法,提升矩阵乘计算效率;其次,提出了基于3D-MMA的加速系统,构建了3D-MMA的性能模型,并对其设计空间进行探索;最后,评估了该结构实现代价,并同已有先进加速器进行对比分析。实验结果表明,访存带宽为160 GB/s时,采用4层16×16脉动阵列的堆叠结构时,3D-MMA计算峰值性能达3 TFLOPS,效率达99%,且实现代价小于二维实现。在相同工艺下,同线性阵列加速器及K40 GPU相比,3D-MMA的性能是后者的1.36及1.92倍,而面积远小于后者。探索了3D集成电路在高性能矩阵乘加速器设计中的优势,对未来进一步提升高性能计算平台性能具有一定的参考价值。
[3D集成电路, 矩阵乘, 分块算法, 性能模型]
[王吉军, 郝子宇, 李宏亮]