新型冠状病毒(COVID-19)疫情爆发期间,涌现出了众多的抗疫意见领袖。通过对意见领袖话题传播和演化进行分析研究,可以为网络舆情治理和疫情防控提供理论和知识支撑。采用N-Gram语言模型和Shingling相似度算法相结合的方式进行话题检测,再通过Neo4j图数据库存储与检索意见领袖、话题、事件等多维实体特征,构建以意见领袖为核心的话题图谱。实验结果表明,话题准确率达82.3%,召回率达81.6%,与传统Single-Pass聚类相似度算法相比均有所提高。通过对图谱分析,能够简单直观地展示出不同实体间多维舆情关系。同时,可以提高检索速度和分析效率,符合舆情传播客观规律。
[新冠疫情, 意见领袖, 网络舆情, 知识图谱, 话题分析]
[任东亮, 林绍福, 黄鸿发, 付钰]