知识图谱是人工智能的重要基石,其目前主要有RDF图和属性图两种数据模型,在这两种数据模型之上有数种查询语言.RDF图上的查询语言为SPARQL,属性图上的查询语言主要为Cypher.10年来,各个社区开发了分别针对RDF图和属性图的不同数据管理方法,不统一的数据模型和查询语言限制了知识图谱的更广泛应用.KGDB(knowledge graph database)是统一模型和语言的知识图谱数据库管理系统:(1)以关系模型为基础,提出了统一的存储方案,支持RDF图和属性图的高效存储,满足知识图谱数据存储和查询负载的需求;(2)使用基于特征集的聚类方法解决无类型实体的存储问题;(3)实现了SPARQL和Cypher两种不同知识图谱查询语言的互操作性,使其能够操作同一个知识图谱.在真实数据集与合成数据集上进行的大量实验表明:KGDB与已有的知识图谱数据库管理系统相比,不仅能够提供更加高效的存储管理,而且具有更高的查询效率.KGDB平均比gStore和Neo4j节省了30%的存储空间,基本图模式查询上的实验表明:在真实数据集上的查询速度普遍高于gStore和Neo4j,最快可提高2个数量级.
[知识图谱, SPARQL, Cypher, RDF图, 属性图]
[刘宝珠, 王鑫, 柳鹏凯, 李思卓, 张小旺, 杨雅君]