Recommending a limited number of Point-of-Interests (POIs) a user will visit next has become increasingly important to both users and POI holders for Location-Based Social Networks (LBSNs). However, POI recommendation is a challenging task since complex sequential patterns and rich contexts are contained in extremely sparse user check-in data. Recent studies show that embedding techniques effectively incorporate POI contextual information to alleviate the data sparsity issue, and Recurrent Neural Network (RNN) has been successfully employed for sequential prediction. Nevertheless, existing POI recommendation approaches are still limited in capturing user personalized preference due to separate embedding learning or network modeling. To this end, we propose a novel unified spatio-temporal neural network framework, named PPR, which leverages users’ check-in records and social ties to recommend personalized POIs for querying users by joint embedding and sequential modeling. Specifically, PPR first learns user and POI representations by joint modeling User-POI relation, sequential patterns, geographical influence, and social ties in a heterogeneous graph and then models user personalized sequential patterns using the designed spatio-temporal neural network based on LSTM model for the personalized POI recommendation. Furthermore, we extend PPR to an end-to-end recommendation model by jointly learning node representations and modeling user personalized sequential preference. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms state-of-the-art baselines for successive POI recommendation in terms of Accuracy, Precision, Recall and NDCG.
[Shaojie Dai, Yanwei Yu, Hao Fan, Junyu Dong]