扩散模型在生成模型领域具有高质量的样本生成能力,一经推出就不断地刷新图像生成评价指标FID分数的记录,成为了该领域的研究热点,而此类相关综述在国内还鲜有介绍。因此,文中对相关扩散生成模型的研究进行汇总与分析。首先,对去噪扩散概率模型、基于分数的扩散生成模型和随机微分方程的扩散生成模型这3类通用模型的特点和原理进行了论述,就每一类基本扩散模型中以优化模型内部算法、高效采样为改进目标的相关衍生模型进行分析。其次,对当下扩散模型在计算机视觉、自然语言处理、时间序列、多模态和跨学科领域等方面的应用进行总结。最后,基于上述论述,分别就目前扩散生成模型存在的采样步骤多、采样时间长等局限性提出了相关建议,并结合前述研究对未来扩散生成模型的发展方向进行了研判。
[深度学习, 生成模型, 去噪扩散概率模型, 基于分数的扩散模型, 随机微分方程, 图像生成]
[闫志浩, 周长兵, 李小翠]