随着人工智能应用的广泛落地,人工智能系统的安全性研究和防范,日益受到学术界和工业界的重视。近年来,联邦学习技术框架的提出,已逐渐成为满足隐私保护需求的人工智能系统的标杆型范式。对于联邦学习技术框架的安全性评估,目前已经十分必要。本报告将围绕联邦学习技术框架,分别介绍联邦学习框架内不同模块可能遇到的潜在攻击方式及相应解决办法,尤其针对数据下毒,信道监听,以及对抗样本等常见攻击手段,在联邦学习框架下进行讨论和分析。为工业实践者在具体部署过程中,提供指导性建议。
[联邦学习, 安全]
冯霁